

WEEKLY TEST TARGET - JEE - TEST - 17 SOLUTION Date 01-09-2019

[PHYSICS]

1. Force acting on bubble due to surface tension = $\int Tdl \sin \theta$

$$F_{\text{surface}} = (T \sin \theta) \int dl = T \left(\frac{r}{R}\right) (2\pi r)$$

This force will balance the force of buoyancy.

So,
$$T(2\pi r)\left(\frac{r}{R}\right) = \left(\frac{4}{3}\pi R^3\right)\rho_W g$$

$$\Rightarrow \qquad r^2 = \frac{2}{3} \frac{\rho_W g}{T} \, R^4 \Rightarrow r = R^2 \sqrt{\frac{2 \rho_W g}{3 T}}.$$

None of given options is correct.

2. Equating pressure at A

 $(R \cos \alpha + R \sin \alpha) d_2 g = (R \cos \alpha - R \sin \alpha) d_1 g$

$$\Rightarrow \frac{d_1}{d_2} = \frac{\cos\alpha + \sin\alpha}{\cos\alpha - \sin\alpha} = \frac{1 + \tan\alpha}{1 - \tan\alpha}$$

- 3. Force from right hand side of the liquid on left hand side liquid.
 - i. Due to surface tension force = 2RT (towards right)
 - ii. Due to liquid pressure force

$$=\int_{x=0}^{x=h} (p_0 + \rho gh)(2Rx) dx$$

=
$$(2p_0Rh + R\rho gh^2)$$
 (towards left)

$$\therefore$$
 Net force is $|2p_0Rh + R\rho gh^2 - 2RT|$

4. From Archemedes' principle, this apparent loss in weight is equal to the weight of the liquid displaced by the body.

Also, volume of candle = Area \times length

$$=\pi\bigg(\frac{d}{2}\bigg)^2\times 2L$$

Weight of candle = Weight of liquid displaced

$$V\rho g = V'\rho'g'$$

$$\Rightarrow \left(\pi \frac{d^2}{4} \times 2L\right) \rho = \left(\pi \frac{d^2}{4} \times L\right) \rho'$$

$$\Rightarrow \frac{\rho}{\rho'} = \frac{1}{2}$$

Since candle is burning at the rate of 2 cm/h, then after an hour, candle length is 2L-2

$$\therefore (2L-2)\rho = (L-x)\rho'$$

$$\therefore \frac{\rho}{\rho'} = \frac{L-x}{2(L-1)}$$

$$\Rightarrow \frac{1}{2} = \frac{L - x}{2(L - 1)}$$

$$\Rightarrow$$
 $x = 1 \text{ cm}$

Hence, in one hour it melts 1 cm and so it falls at the rate of 1 cm/h.

5.

The velocity of fluid at the hole is $V_2 = \sqrt{\frac{2gh}{1 + (a^2/A^2)}}$

Using continuity equation at the two cross-sections (1) and (2):

$$V_1 A = V_2 a \Rightarrow V_1 = \frac{a}{A} V_2$$

$$\Rightarrow \text{Acceleration of top surface } = -V_1 \frac{dV_1}{dh}$$

$$= -\frac{a}{A}V_2 \frac{d}{dh} \left(\frac{a}{A}V_2\right)$$

$$a_1 = -\frac{a^2}{A^2}V_2 \frac{dV_2}{dh} = -\frac{a^2}{A^2}\sqrt{2gh}\sqrt{2g} \cdot \frac{1}{2\sqrt{h}}$$

$$\Rightarrow a_1 = \frac{-ga^2}{A^2}$$

Tension in rod at a distance x from right edge is 6.

7.

Let the container is dipped to depth h, so the contact angle becomes θ

$$P_A = P_0$$

$$P_B = P_0 + \rho g h$$

$$P_C = P_0 + \rho g h - \frac{2T}{r} \cos \theta = P_0$$

$$\cos \theta = \frac{\rho g h r}{2T} \le 1$$

$$h \le \frac{2T}{\rho g r} \implies h_{\text{max}} = \frac{2T}{\rho g r}$$

8. The free body diagram of the capillary tube is as shown in the figure. Net force F required to hold tube is

 S_1 and S_2 are the forces due to surface tension at cross-section

Free body diagram of capillary tube

$$\Rightarrow F = (S_1 + S_2) + \text{weight of tube}$$

$$= (2\pi RT + 2\pi RT) + mg = 4\pi RT + mg$$
Here $R = 2\text{mm} = 2 \times 10^{-3} \text{ m}, T = 0.1 \text{ N/m and } m = \pi \times 10^{-3} \text{ kg}$

$$F = 4\pi (2 \times 10^{-3}) (0.1) + (\pi \times 10^{-3}) \times 10 = 10.8\pi \times 10^{-3} N$$

$$= 10.8\pi \text{ mN}$$

According to Bernoulli's principle 9.

$$P + \frac{1}{2}\rho v^2 = \text{constant}$$

At the sides the velocity is higher, so the pressure is lower. But the pressure at a given horizontal level must be equal, therefore the liquid rises at the sides to some height to compensate for this drop in pressure.

10. (a) In \triangle AOB : $-\cos 60^{\circ} = \frac{R}{OB} \Rightarrow OB = 2R$ (where OB is orbital radius)

Here gravitational force will provide the required centripetal force.

Hence
$$\frac{GMm}{(OB)^2} == m(OB) \omega^2$$

$$\Rightarrow \omega = \sqrt{\frac{GM}{(OB)^3}} = \sqrt{\frac{GM}{(2R)^3}} \Rightarrow \omega = \sqrt{\frac{GM}{8R^3}}$$
11. (c) Weight = Buoyant force

$$V\rho_{\rm m}g = \frac{V}{2}\rho H_{\rm g}g + \frac{V}{2}\rho_{\rm oil}g$$

$$\rho_{\rm m} = \frac{\rho_{\rm Hg} + \rho_{\rm oil}}{2} = \frac{13.6 + 0.8}{2} = \frac{14.4}{2} = 7.2$$
Mercury

12. (a) Velocity of efflux of water (v) = $\sqrt{2g\left(\frac{h}{2}\right)} = \sqrt{gh}$

force on ejected water = Rate of change of momentum of ejected water.

$$= \rho(av)(v)$$
 $= \rho av^2$

Torque of these forces about central line

$$= (\rho a v^2) 2R.2$$
 $= 4\rho a v^2 R = 4\rho a gh R$

13. (b) For the given situation, liquid of density 2 ρ should be behind that of ρ . From right limb:

$$P_A = P_{atm} + \rho gh$$

$$P_B = P_A + \rho a \frac{l}{2} = P_{atm} + \rho gh + \rho a \frac{l}{2}$$

$$P_{C} = P_{B} + (2\rho) a \frac{l}{2} = P_{atm} + \rho gh + \frac{3}{2} \rho a 1$$
(1)

But from left limb:

$$\begin{split} P_{C} &= P_{atm} + (2\rho) \ gh \\ From (1) \ adn \ (2) \ : \end{split}$$

$$P_{atm} + \rho gh + \frac{3}{2} \rho a \lambda = P_{atm} + 2 \rho gh \Rightarrow h = \frac{3a}{2g}l$$
14. (a) Viscous force = mg sin q

$$\therefore \eta A \frac{V}{t} = mg \sin \theta \quad \text{or } \eta a^2 \frac{V}{t} = a^3 \rho g \sin \theta$$

when the ball is just released, the net force on ball is $W_{\rm eff} (= mg - buoyant force)$ The terminal velocity ' $v_{\rm f}$ ' of the ball is attained when net force on the ball is zero.

 \therefore Viscous force $6\pi\eta r v_f = W_{eff}$

When the bal acquires $\frac{2}{3}$ W_{eff}

Hence net force is $W_{\text{eff}} - \frac{2}{3} W_{\text{eff}} = \frac{1}{3} W_{\text{eff}}$

 \therefore required acceleration is $=\frac{a}{3}$

16. (b) Velocity gradient = $\frac{0.52 \times 2}{2.5 \times 10^{-2}}$

Also,
$$F = 2\eta A \frac{dv}{dz} = 2 \times \eta \times (0.5) \frac{0.5}{1.25 \times 10^{-2}}$$

 $\Rightarrow \eta = 2.5 \times 10^{-2} \text{ kg} - \text{sec/m}^2$

17. (a)
$$\Delta = \frac{Fl}{AY}$$
 $\frac{\Delta l}{(F/A)} = \frac{l}{Y} = \text{slope of curve}$

$$\frac{l}{Y} = \frac{(4-2) \times 10^{-3}}{4000 \times 10^{3}}$$
Given $|=1 \text{ m} \rightarrow$

$$Y = \frac{4000 \times 10^3}{2 \times 10^{-3}} = 2 \times 10^9 \,\text{N} \,/\,\text{m}^2$$

18.

Acceleration A = F/m

 $T = \frac{mx}{l} \times \frac{F}{m} = \frac{Fx}{l}$ then

Extension in 'dx' element –

$$d\delta = \frac{Tdx}{AY} = \frac{Fxdx}{lAY}$$

Total extension

$$\delta = \int_0^l \frac{Fx dx}{lAY} = \frac{Fl}{2AY}$$

19. (a) From continuity equation, velocity at cross-section (1) is more than that at cross-section (2). Hence; $P_1 < P_2$ Hence (A)

20. (c)

Volume equality gives

$$2 \times 3 = \frac{1}{2} \times h \times 3 \Longrightarrow h = 4m$$

$$\therefore \tan \theta = \frac{4}{3} = \frac{a}{g} \Rightarrow a = \frac{4}{3}g$$

- 22. (a) As the vessel is falling freely, the pressure at all the points in the liquid is same and equal to the atmosphere pressure and hence buoyance becomes zero.
- 23. (d) The point A and C in same horizontal level hence $P_C P_A = \rho a l$ (refer to figure in question to idenfity A, B, C)

Now,
$$P_B - P_C = \rho g h$$

$$\Rightarrow P_B = (P_1 + \rho al) = \rho gh \Rightarrow P_B - P_A = h \rho g + l \rho a$$

24. (b) As the weight of wire acts at centre of gravity. Therefore, only half the length of wire gets extended.

Now
$$Y = \frac{F}{A} \cdot \frac{(L/2)}{\Delta l} = \frac{Mg(L/2)}{A\Delta l}$$

$$\Rightarrow \Delta l \frac{MgL}{2AY} \Rightarrow \Delta l \frac{AL\rho gL}{2AY}$$

$$\therefore \Delta l = \frac{\rho L^2 g}{2Y}$$

25. (a)
$$Y = \frac{F/a}{\Delta l/l} = \frac{Fl}{a\Delta l}$$

or
$$Y = \frac{Fl \times 4}{\pi D^2 \times \Delta l}$$
 or $\Delta l \propto \frac{1}{D^2}$ or $\frac{\Delta l_2}{\Delta l_1} = \frac{D_1^2}{D_2^2} = \frac{n^2}{1}$

26. (d)
$$Y = \frac{F/a}{\Delta l/l} = \frac{Fl}{a\Delta l}$$
 or $\Delta l \propto \frac{1}{D^2}$

(a)
$$\frac{100}{t^2} = 100$$

(a)
$$\frac{100}{l^2} = 100$$
 (b) $\frac{400}{4} = 50$

(c)
$$\frac{300}{9} = 33.33$$

(c)
$$\frac{300}{9} = 33.33$$
 (d) $\frac{50}{(1/2)^2} = 200$

27. (a) Energy density =
$$\frac{1}{2} \times \text{Stress} \times \text{Strain}$$

$$= \frac{1}{2} \times Stress \times \frac{Strain}{Y} = \frac{(Stress)^2}{2Y} \propto \frac{1}{D^4}$$

Now,
$$\frac{u_A}{u_B} = \frac{D_B^4}{D_A^4} = [2]^4 = 16$$

28. (c) Thermal stress = $Y\alpha t$ In the given problem,

$$Y\alpha = \text{constant}$$

$$\frac{Y_1}{Y_2} = \frac{\alpha_2}{\alpha_1} = \frac{3}{2}$$

29. (c)
$$Y = \frac{Fl}{a\Delta l}$$

Y, l and a are constants

$$\therefore \frac{Fl}{\Lambda l} = \text{constant or Dl} \propto F$$

Now,
$$l_1 - l = T_1$$
 and $l_2 - l = T_2$

Dividing,
$$\frac{l_1 - l}{l_2 - l} = \frac{T_1}{T_2}$$

or
$$l_1 T_2 - l T_2 = l_2 T_1 - l T_1$$
 or $T(T_1 - T_2) = l_2 T_1 - l_1 T_2$

or
$$l = \frac{l_2 T_1}{T_1 - T_2}$$
 or $l = \frac{T_1 l_2 - lT}{T_3 - T_1}$

30. (b)
$$T = T = \frac{2m_1m_2}{m_1 + m_2}g = \frac{2 \times 1 \times 2}{1 + 2} \times 10N = \frac{40}{3}N$$

If r is the minimum radius, then

Breaking stress =
$$\frac{\frac{40}{30}}{\pi r^2}$$
 or $\frac{40}{3\pi} \times 10^6 = \frac{40}{3\pi r^2}$

or
$$r^2 = \frac{1}{10^6}$$
 or $r = \frac{1}{10^3}$ m

or
$$r = \frac{1}{10^3} \times 10^3 \,\text{m} = 1 \,\text{m}$$

[CHEMISTRY]

31.

32.

33.

Octahedral complex has 6 centres for coordination to the central metal ion. EDTA has 6 centres for coordination. Hence, only **one** molecule is required.

34.

35.

Six C-atoms of each of the two benzene rings are equidistant from Cr atom but the π -bonds are fully delocalised.

EAN of Cr = 24 (At. No.) + $2 \times 6e^{-}$ from each benzene ring = 24 + 12 = 36

36.

37.

Since, 2 moles of AgCl are formed, out of 3Cl only two give precipitates which are in ionic sphere. C.N. of Co is 6.

38.

The given formula CoCl₃·6NH₃ confirms the (b) answer only. Moreover,

Moles of complex =
$$\frac{2.675}{267.5} = 0.01$$

Moles of AgCl =
$$\frac{4.78}{143.5}$$
 = 0.033

This shows 3Cl⁻ ions in ionic sphere.

39.

Both show cis and trans-geometrical isomerism. Cis-isomer appears in d and l optical isomers. Hence, both have total 3 isomers each.

40.

Nes and SCN are ambident ligands.

41.

 $[Co(en)_2(NH_3)_2]^{3+}$ has *cis* and *trans*- structures. The *cis*- structure shows optical isomerism.

42.

43. 44.

Neutral cases of carbonyls slightly increase the bond length of C — Obond by donation in antibonding molecular orbitals of CO molecule.

45.

46.

$$NH_3 + H^+ \longrightarrow NH_4^+$$

47.

This compound is cis-platin anticancer compound.

48.

Cr(Z=24):[Ar] $3d^3$ has three unpaired electrons even after the effect of strong ligand NH₃.

49.

CO is a strong ligand. 6 electrons of $3d^5 4s^1$ form pairs and no unpaired electron is left.

50.

Though NH₃ and CN⁻ both are strong ligands yet NH₃ cannot vacate two *d*-orbitals from Ni²⁺: [Ar] $3d^8$ $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$. Here hybridisation is sp^3d^2 .

51.

 Co^{3+} , $3d^6$ will be $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$ by the effect of strong field ligand NH₃.

Hybridisation will be d^2sp^3 showing inner orbital complex. All electrons are paired up, so diamagnetism is shown.

52.

$$[Ni(CN)_4]^{4-}$$
: $x-4=-4 \implies x=0$

53.

In [Co(en)₃]³⁺ has all (en) in cis- positions and hence, shows optical isomerism.

54.

It is a chelate of five members.

55.

In $[MnCl_4]^{2-}$, Mn^{2+} : $[Ar] 3d^5$ has 5 unpaired electrons.

In $[CoCl_4]^{2-}$, Co^{2+} : [Ar] $3d^7$ has 3 unpaired electrons.

In both Cl⁻ is a weak ligand.

 $In[Fe(CN)_6]^{4-}$, CN^- is a strong ligand. Fe^{2+} : [Ar] $3d^6$ will have no unpaired electron.

56.

 μ = 2.84 B.M. shows two unpaired electrons in *d*-subshell, *i.e.*, even number of electrons in all \uparrow \uparrow \uparrow \uparrow \uparrow will have at the maximum \uparrow \downarrow \uparrow \uparrow set with two vacant orbitals.

57.

 Mn^{2+} , $3d^{5}$ will have **five** unpaired electrons because $\mathrm{H}_{2}\mathrm{O}$ is a weak ligand.

58.

59.

60.

Fac and mer isomers are optically inactive.